ION-ACOUSTIC TURBULENCE IN A COLLISIONLESS
SHOCK WAVE

G. E. Vekshtein UDC 533.951.7/.3

The structure of a collisionless shock wave at the front of which ion-acoustic turbulence is ex-
cited is investigated. On the basis of the theory of anomalous resistance, equations are obtained
for the oscillational spectrum and the particle distribution function in the plasma which, when
known, make it possible to determine the magnetic field profile, density, and other macroscopic
characteristics of the shock wave. The possibility of comparing theoretical predictions with ex-
perimental results from light scattering at the shock front is discussed,

1, Introduction. It can be considered an established fact that the existence of collisionless shock
waves in a plasma within a magnetic field is related to the phenomenon of anomalous resistance over a
broad range of parameters [1], The reason for its formation is strong plasma nonuniformity and conse-
quent excitation of various instabilities. A large number of experimental results related to shock waves
propagated across a magnetic field show that in a low-pressure plasma such that g= 8mp/H? «1 (p is the
gaskinetic plasma pressure, H is magnetic field intensity) and in relatively weak magnetic fields (where
the electron plasma frequency Wpe is much greater than the electron cyclotron frequency wye), ion-acous-
tic instability plays a leading role. Its development is well described by the theory of weak turbulence, and
the basic problem encountered here is the choice of mechanism providing establishment of an equilibrium
level of fluctuation, This question has been discussed manytimes, and an analysis of experimental data
[2] makes it possible to give preference to linear Landau damping by ions [3].

Knowing the energy of the oscillations, one can determine from quasilinear equations the effective
collision frequency of the particles, i.e., the dissipative plasma properties which determine shock-wave
structure. Since the time for instability development, which is equal to the inverse of the growth rate, y~1,
in order of magnitude, is much less than the time for the passage of the front through a given point in space
(T~ 6/u, where 6 is the width of the front, and u is the velocity of shock-wave propagation), one first deter-
mines local particle distribution functions established by the effects of quasilinear collisions as is done
in gas dynamics, They are far from Maxwellian as will be seen subsequently., On the basis of conserva-
tion laws one can then obtain magnetohydrodynamic equations describing the variation of macroscopic plas-

ma characteristics in space and time,

2. Electron and Ion Distribution Functions and Vibrational Spectra. Ordinarily, the electron-scatter-
ing frequency in shock waves is considerably less than the cyclotron frequency. Therefore,the directed
electron motion is a drift motion. Let it occur along the x axis at some velocity x_re (we assume the mag-
netic field is directed along z). Then the electron velocity distribution function f,(v) in the rest system of
the electrons is axially symmetric around the z axis. In the present case where electron scattering is as-
sociated with ion-acoustic oscillations, it can be assumed generally isotropic: Fg(v). This is a consequence
of the fact that the electrons are scattered nearly elastically because of the small phase velocity of ion
sound, Therefore, the x axis — the direction of electron drift — is a uniquely preferred direction for the
excitation of vibrations.

We introduce spherical coordinates in velocity space (v, 6, ¢) and in wave vector space (k, 8',¢') with
polar axis along x. We denote the electrostatic energy density of the oscillations by W(k, 6'). According
to the definition of the quasilinear diffusion coefficients for electrons, we have
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In this case, the only nonzero components are Dgy (e) DVS) Dg(g) and Dg(f) . In their calculation, one
must bear in mind that in the electron rest system, whlch is moving with a velocity Ve that is much greater

than the phase velocity of ion sound, the frequency of all vibrations (because of the Doppler effect) is
wk ~—k, Ve -kV cos 6'. In addition, we allow for the fact Ve is small in comparison with the thermal ve- .
locities of the electrons We then obtain from Eq. (2.1)
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0
for 6<w /2, D(r—6)=D(B).

An equation for the isotropic electron distribution function Fg(v) is found by integration of the quasi-
linear equation over the angle 6,
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The electron growth rate for the excitation of vibrations determined by the function Fe (v) is approxi-
mately
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Vo= N2 — " k: ~—7V,cos6 (2.4)
We calculate the frictional force R experienced by the electrons during drift motion,
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Defining the effective electron scattering frequency v, so that R =—me{7enve, we obtain

v =2 222 SD(B) sin 6d0 (2.6)

0

We turn fo a determination of the ion-velocity distribution. In the model assumed, the main mass of
ions does not interact with the vibrations [3], A contribution to linear Landau damping is made only by a
small group of ions which may be in resonance with the vibrations, We introduce their distribution func-
tion fi(v, 6) and denote their total number per unit volume by nx; so that

Sfid3v = nz;
The kinetic equation for f; has the form
of, 1 @ o DR of t 9 ( po 2 Dg) of;
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(the specific form of the diffusion coefficients Dg)ﬁ will be given below in more convenient variables).

Under the influence of the vibrations, the particle distribution functions vary so that the total growth
rate y =yq+7vj is close to zero for those values of the wave vector k, where W) #0 and is not positive where
Wi =0,

Writing an expression for the ion decrement
3 af, of, . . ’ N2-Ye
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and considering that the electrons excite all waves for which cos 6'= 0, we obtain still another equation
which the functions f;(v, 6) must satisfy:
0 for cos9’ >0

= 2.9)
T‘L+Te'—'{<0 for cOSe/<0 (
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The unknown functions Fg(v, t), fi(v, 6, t), and W(k, 6, t) must also be determined from Egs. (2.1),
(2.3), (2.7), and (2.9). These equations possess the property that F,, f;, and W cease to depend on initial
conditions, and their evolution in time takes on a universal nature (in the terminology of [4], an asymptotic
solution is established). Since the plasma is cold (8, < 1) ahead of the shock wave in the initial state, its
heating occurs very rapidly, and a transition to the asymptotic solution occurs everywhere within the shock
front. To determine the solution it is necessary to introduce in the equation self-similar variables, as has
been done previously [4]. As a result, the electron distribution function
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is determined where the temperature T, is defined so that the electron kinetic energy density is 3nTe/ 2,
and the pressure, correspondingly, is nT,. The spectral density of the vibrational electrostatic energy
is conveniently written in the form

(2.10)
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The ion distribution function is
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and the quantity Ti is the effective temperature of the resonance ions, An equation for gj(¢, ) follows
from Eq, (2.7):
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In the asymptotic mode, the number of resonance ions x;, the ratio of electron and ion temperature
T;/Te, and the ratio of the drift velocity Vg to electron thermal velocity (Te/me)1 2 remain constant,

It was found [3] that
Ve = O (me/mi)v‘ (Te / me)’lzr Z; = “{(me / mi)l/" Ti = asTe (2.14)

where the numbers @,, 5, 5 are constants of the order of unity, andit is necessary to know the exact solu-
tion of Eq. (2.13) in order to determine them,

3. Structure of a Weak Shock Wave, In the present problem, dispersion effects associated with the
inclusion of electron inertia or breakdown of quasineutrality are unimportant, It is therefore sufficient to
limit ourselves to a single-fluid approximation, The plasma, as awhole, moves along the y axis — the direc-
tion of shock-wave propagation. We denote the plasma velocity by u. We calculate all quantities in a frame
of reference moving with the shock wave, The electromagnetic field has the following nonzero components:
H, =H(y); Ey(y) is the electric field which arises because of plasma polarization, andEx is the induced
electric field in a wave system independent of the coordinates,

In the unperturbed plasma ahead of the shock wave, i.e., for y—+ «, the magnetic field is H,, the den-
sity n,, and the velocityuy, The initial temperature can be assumed to be zero, The shock-wave intensity
is characterized by the Mach number M =uy/v,, where vp =Hy/V-4mmin;. We consider the case of weak
shock waves for which (M—1) <1, From the Hugoniot relations it follows that for this limit the change in
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the quantities H, n, and u in the shock wave are of the order of (M—1),whereas the final electron temperature
behind the shock front Te~(M—1)3. All the equations written below are simplified by the inclusion of these
conditions.

Since there is no electric field in the laboratory system in the unperturbed plasma,
E,=uH,/c=MHwslc (3.1)
The polarization field Ey is set up so that the electrons and ions move together along y. Hence,
By =VH(y)/c 3.2)
The total force acting on the electrons in the drift direction must be equated to zero:
R = ne (E. — ucH) = nec-! (Mo H, — uH) (3.3)

The constancy of momentum flux density, the continuity equation, and the Maxwell equation for the mag-
netic field are written in the form

H? Hz2
minonA(u—MvA)+§t—=W‘;—, nu = — neMuva, —d?-l-=—————neV, (3.4)

Only Joule dissipation is important in the plasma thermal balance:
3/,nudT./dy = RV, = neV,c™! (MvaH, — uH) (3.3)

Considering that in weak shock waves the electron current velocity is proportional to their thermal
velocity (2.14), we obtain from Egs, (3.4) and (3.5) a single equation for the magnetic field profile which is
written with the required accuracy in the form

2 [ m, L g2 2
ff(T) S =S (M —Oh— 3K, k= (H — Hy)/H,
It is integrated to
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Only that range of the coordinate y is of interest in which h varies from zero to h, =4/3(M—1) —the
value of the magnetic field in the final state behind the shock wave. As is clear from Eq, (3.6), the width
0 of the weak shock front is the following:

5 c (mi )1/‘
ey, @1

The theoretically predicted constant ratio between electron current and thermal velocities is observed
experimentally and the coefficient @ =1-2 [2] from measurements in a hydrogen plasma, A comparison of
the magnetic field profile (3.6) with measurement indicates that the approximation to a weak shock wave is
applicable up to Mach numbers M =2, The particle distribution functions in the shock front are determined
from Egs. (2.10) and (2.12), and the oscillational spectra from Eq,(2.11), where dT/dt =—udT,/dy.

Further increase in shock-wave intensity leads to electron heating such that the quantity 8 in the
shock front becomes of the order of unity, Electron thermal conductivity becomes important along with
resistance. As a result, the electron velocity distribution function is "distorted" and the self-similar solu-
tion (2.10)-(2,14) becomes inapplicable. Formally, the numbers vary within the shock front, remaining quan-
tities of the order of unity., Therefore, the order of magnitude of all quantities characterizing a shock wave
is unchanged (in particular, their dependence on ion mass),

4. Oscillational Spectra. Experiments on light scattering at small angles in a shock front {5] are of
great interest for an explanation of the mechanism for absorption of ion-acoustic vibrations, The scatter-
ing intensity is proportional to the Fourier components of the fluctuations in electron density produced dur-
ing ion-acoustic turbulence, They are related to the spectral vibrational function Wy by the expression

2.2 W
(O = 10— -5 (4.1)
e

The quantity <6nﬁ> calculated from the angular distribution of the scattered light [5] is nearly pro-
portional to 1/k3 for k¥, =1, and falls rapidly with further increase in k (here r; is some average value of
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the Debye radius in the shock front). The authors interpret this as the result of nonlinear Landau damping
of ion sound by ions [6]. Since the diameter of the laser beam in these experiments was greater than the
width of the front, only information about quantities averaged over the entire front is obtained from the
scattering. Since the electron temperature and the Debye radius vary strongly within the front, the re-
lationship given is of a qualitative nature,

In the present case, where damping by resonance ions occurs, one has not managed to determine Wy,
and thereby <énf >, exactly. We shall try to estimate the dependence on |k| roughly. To do this, we ne-
glect angular dependence completely. The condition v =0 leads to g;(¢£) ~1/£. We then obtain from Eq. (2.13)
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Here the integration is carried out over the range of values g where the phase velocity wq/q is less
than £, This equation is solved with respect to w(q):

w(g) ~ (1 + ¢
Transforming to the usual variables, we have
Wi~ (1 + Ero®)™, (dndy ~ k™2 (1 + ko)~ (4.2)
This result is in qualitative agreement with an earlier one [5].

The author thanks R. Z. Sagdeev and D, D. Ryutov for discussions of the work,
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